In [6]:
import time
Have to install autograd
module first: pip install autograd
In [9]:
import autograd.numpy as np # Thinly-wrapped version of Numpy
from autograd import grad
In [21]:
def tanh(x):
y = np.exp(-x)
return (1.0 - y) / (1.0 + y)
start = time.time()
grad_tanh = grad(tanh)
print ("Gradient at x = 1.0\n", grad_tanh(1.0))
end = time.time()
print("Operation time:\n", end-start)
In [22]:
def taylor_sine(x):
ans = currterm = x
i = 0
while np.abs(currterm) > 0.001:
currterm = -currterm * x**2 / ((2 * i + 3) * (2 * i + 2))
ans = ans + currterm
i += 1
return ans
start = time.time()
grad_sine = grad(taylor_sine)
print ("Gradient of sin(pi):\n", grad_sine(np.pi))
end = time.time()
print("Operation time:\n", end-start)
In [23]:
start = time.time()
#second-order
ggrad_sine = grad(grad_sine)
print ("Gradient of second-order:\n", ggrad_sine(np.pi))
end = time.time()
print("Operation time:\n", end-start)
In [24]:
def sigmoid(x):
return 0.5*(np.tanh(x) + 1)
def logistic_predictions(weights, inputs):
# Outputs probability of a label being true according to logistic model.
return sigmoid(np.dot(inputs, weights))
def training_loss(weights):
# Training loss is the negative log-likelihood of the training labels.
preds = logistic_predictions(weights, inputs)
label_probabilities = preds * targets + (1 - preds) * (1 - targets)
return -np.sum(np.log(label_probabilities))
# Build a toy dataset.
inputs = np.array([[0.52, 1.12, 0.77],
[0.88, -1.08, 0.15],
[0.52, 0.06, -1.30],
[0.74, -2.49, 1.39]])
targets = np.array([True, True, False, True])
# Define a function that returns gradients of training loss using autograd.
training_gradient_fun = grad(training_loss)
# Optimize weights using gradient descent.
weights = np.array([0.0, 0.0, 0.0])
print ("Initial loss:", training_loss(weights))
for i in range(100):
weights -= training_gradient_fun(weights) * 0.01
print ("Trained loss:", training_loss(weights))
In [ ]: